By Topic

High performance object detection by collaborative learning of Joint Ranking of Granules features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang Huang ; University of Southern California, Institute for Robotics and Intelligent Systems, Los Angeles, CA 90089, USA ; Ram Nevatia

Object detection remains an important but challenging task in computer vision. We present a method that combines high accuracy with high efficiency. We adopt simplified forms of APCF features, which we term Joint Ranking of Granules (JRoG) features; the features consists of discrete values by uniting binary ranking results of pair-wise granules in the image. We propose a novel collaborative learning method for JRoG features, which consists of a Simulated Annealing (SA) module and an incremental feature selection module. The two complementary modules collaborate to efficiently search the formidably large JRoG feature space for discriminative features, which are fed into a boosted cascade for object detection. To cope with occlusions in crowded environments, we employ the strategy of part based detection, as in but propose a new dynamic search method to improve the Bayesian combination of the part detection results. Experiments on several challenging data sets show that our approach achieves not only considerable improvement in detection accuracy but also major improvements in computational efficiency; on a Xeon 3GHz computer, with only a single thread, it can process a million scanning windows per second, sufficing for many practical real-time detection tasks.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010