By Topic

Convex shape decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hairong Liu ; Huazhong Univ. of Sci. & Technol., Huazhong, China ; Wenyu Liu ; Latecki, L.J.

In this paper, we propose a new shape decomposition method, called convex shape decomposition. We formalize the convex decomposition problem as an integer linear programming problem, and obtain approximate optimal solution by minimizing the total cost of decomposition under some concavity constraints. Our method is based on Morse theory and combines information from multiple Morse functions. The obtained decomposition provides a compact representation, both geometrical and topological, of original object. Our experiments show that such representation is very useful in many applications.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010