By Topic

Learning from interpolated images using neural networks for digital forensics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yizhen Huang ; Comput. Sci. Dept., Univ. of Wisconsin-Madison, Madison, WI, USA ; Na Fan

Interpolated images have data redundancy, and special correlation exists among neighboring pixels, which is a crucial clue in digital forensics. We design a neural network based framework to approximate the stylized computational rules of interpolation algorithms for learning statistical inter-pixel correlation of interpolated images. The interpolation process is cognized from the interpolation results. Experiments are carried out on camera built-in Color Filter Array interpolation and super resolution: Three classifiers are trained to classify image interpolation algorithms, identify source cameras and uncover digital forgeries. Like the Wiener attack in watermarking, the special correlation can be reduced or transferred it to another image by our learned network.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010