By Topic

A content-aware image prior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Taeg Sang Cho ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Joshi, N. ; Zitnick, C.L. ; Sing Bing Kang
more authors

In image restoration tasks, a heavy-tailed gradient distribution of natural images has been extensively exploited as an image prior. Most image restoration algorithms impose a sparse gradient prior on the whole image, reconstructing an image with piecewise smooth characteristics. While the sparse gradient prior removes ringing and noise artifacts, it also tends to remove mid-frequency textures, degrading the visual quality. We can attribute such degradations to imposing an incorrect image prior. The gradient profile in fractal-like textures, such as trees, is close to a Gaussian distribution, and small gradients from such regions are severely penalized by the sparse gradient prior. To address this issue, we introduce an image restoration algorithm that adapts the image prior to the underlying texture. We adapt the prior to both low-level local structures as well as mid-level textural characteristics. Improvements in visual quality is demonstrated on deconvolution and denoising tasks.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010