By Topic

Delineating trees in noisy 2D images and 3D image-stacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Germán González ; CVLab, EPFL, CH-1015 Lausanne, Switzerland ; Engin Türetken ; Franc¸ois Fleuret ; Pascal Fua

We present a novel approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, our method builds a set of candidate trees over many different subsets of points likely to belong to the final one and then chooses the best one according to a global objective function. Since we are not systematically trying to span all nodes, our algorithm is able to eliminate noise while retaining the right tree structure. Manually annotated dendrite micrographs and retinal scans are used to evaluate the performance of our method, which is shown to be able to reject noise while retaining the tree structure.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010