Cart (Loading....) | Create Account
Close category search window
 

Visual event recognition in videos by learning from web data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lixin Duan ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Dong Xu ; Tsang, I.W. ; Jiebo Luo

We propose a visual event recognition framework for consumer domain videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). First, we propose a new aligned space-time pyramid matching method to measure the distances between two video clips, where each video clip is divided into space-time volumes over multiple levels. We calculate the pair-wise distances between any two volumes and further integrate the information from different volumes with Integer-flow Earth Mover's Distance (EMD) to explicitly align the volumes. Second, we propose a new cross-domain learning method in order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time feature and static SIFT feature) and 2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web domain and consumer domain). For each pyramid level and each type of local features, we train a set of SVM classifiers based on the combined training set from two domains using multiple base kernels of different kernel types and parameters, which are fused with equal weights to obtain an average classifier. Finally, we propose a cross-domain learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), to learn an adapted classifier based on multiple base kernels and the prelearned average classifiers by minimizing both the structural risk functional and the mismatch between data distributions from two domains. Extensive experiments demonstrate the effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.