By Topic

Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiuzhuang Zhou ; Computer Science School, Beijing Institute of Technology, Beijing Laboratory of Intelligent Information Technology, Beijing, China ; Yao Lu

Robust tracking of abrupt motion is a challenging task in computer vision due to the large motion uncertainty. In this paper, we propose a stochastic approximation Monte Carlo (SAMC) based tracking scheme for abrupt motion problem in Bayesian filtering framework. In our tracking scheme, the particle weight is dynamically estimated by learning the density of states in simulations, and thus the local-trap problem suffered by the conventional MCMC sampling-based methods could be essentially avoided. In addition, we design an adaptive SAMC sampling method to further speed up the sampling process for tracking of abrupt motion. It combines the SAMC sampling and a density grid based statistical predictive model, to give a data-mining mode embedded global sampling scheme. It is computationally efficient and effective in dealing with abrupt motion difficulties. We compare it with alternative tracking methods. Extensive experimental results showed the effectiveness and efficiency of the proposed algorithm in dealing with various types of abrupt motions.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010