By Topic

3D model based vehicle classification in aerial imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khan, S.M. ; Sarnoff Corp., Princeton, NJ, USA ; Hui Cheng ; Matthies, D. ; Sawhney, H.

We present an approach that uses detailed 3D models to detect and classify objects into fine levels of vehicle categories. Unlike other approaches that use silhouette information to fit a 3D model, our approach uses complete appearance from the image. Each 3D model has a set of salient location markers that are determined a-priori. These salient locations represent a sub-sampling of 3D locations that make up the model. Scene conditions are simulated in the rendering of 3D models and the salient locations are used to bootstrap a HoG based feature classifier. HoG features are computed in both rendered and real scenes and a novel object match score the `Salient Feature Match Distribution Matrix' is computed. For each 3D model we also learn the patterns of misalignment with other vehicle types and use it as an additional cue for classification. Results are presented on a challenging aerial video dataset consisting of vehicle imagery from various viewpoints and environmental conditions.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010