By Topic

Monocular SLAM with locally planar landmarks via geometric rao-blackwellized particle filtering on Lie groups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junghyun Kwon ; Dept. of EECS, Seoul Nat. Univ., Seoul, South Korea ; Kyoung Mu Lee

We propose a novel geometric Rao-Blackwellized particle filtering framework for monocular SLAM with locally planar landmarks. We represent the states for the camera pose and the landmark plane normal as SE(3) and SO(3), respectively, which are both Lie groups. The measurement error is also represented as another Lie group SL(3) corresponding to the space of homography matrices. We then formulate the unscented transformation on Lie groups for optimal importance sampling and landmark estimation via unscented Kalman filter. The feasibility of our framework is demonstrated via various experiments.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010