By Topic

Variational segmentation of elongated volumetric structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Christian Reinbacher ; Institute for Computer Graphics and Vision, Graz University of Technology, Austria ; Thomas Pock ; Christian Bauer ; Horst Bischof

We present an interactive approach for segmenting thin volumetric structures. The proposed segmentation model is based on an anisotropic weighted Total Variation energy with a global volumetric constraint and is minimized using an efficient numerical approach and a convex relaxation. The algorithm is globally optimal w.r.t. the relaxed problem for any volumetric constraint. The binary solution of the relaxed problem equals the globally optimal solution of the original problem. Implemented on today's user-programmable graphics cards, it allows real-time user interaction. The method is applied to and evaluated on the task of articular cartilage segmentation of human knee joints and segmentation of tubular structures like liver vessels and airway trees.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010