By Topic

A Repeated Game Formulation of Energy-Efficient Decentralized Power Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Le Treust ; LSS - SUPELEC - CNRS, 3 rue Joliot-Curie, 91192 GIF SUR YVETTE CEDEX, France ; S. Lasaulce

Decentralized multiple access channels where each transmitter wants to selfishly maximize this transmission energy-efficiency are considered. Transmitters are assumed to choose freely their power control policy and interact (through multiuser interference) several times. It is shown that the corresponding conflict of interest can have a predictable outcome, namely a finitely or discounted repeated game equilibrium. Remarkably, it is shown that this equilibrium is Pareto-efficient under reasonable sufficient conditions and the corresponding decentralized power control policies can be implemented under realistic information assumptions: only individual channel state information and a public signal are required to implement the equilibrium strategies. Explicit equilibrium conditions are derived in terms of minimum number of game stages or maximum discount factor. Both analytical and simulation results are provided to compare the performance of the proposed power control policies with those already existing and exploiting the same information assumptions namely, those derived for the one-shot and Stackelberg games.

Published in:

IEEE Transactions on Wireless Communications  (Volume:9 ,  Issue: 9 )