By Topic

Adaptive neural network tracking control of robot manipulators including motor dynamics: Dynamic surface backstepping methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiwen Guo ; Dept. of Electr. Eng. & Autom., Hefei Univ. of Technol., Hefei, China ; Qunjing Wang ; Cungang Hu ; Zhe Qian

To solve the trajectory tracking control problem for rigid-link robot manipulators including actuator dynamics, a novel neural network (NN)-based adaptive algorithm is discussed. In the proposed control algorithm, radial basis function neural network (RBFNN) is adopted to approximate the nonlinear dynamics of the robot manipulators' electromechanical system. Moreover, the key features are that, firstly, the unmatched & uncertainties of the system are overcame, secondly, the problem of “explosion of complexity” inherent in the conventional backstepping method is avoided due to combing with “dynamic surface control” (DSC) approach. Finally, simulation results are included to demonstrate the tracking performance and the effectiveness of proposed algorithm.

Published in:

Industrial Mechatronics and Automation (ICIMA), 2010 2nd International Conference on  (Volume:1 )

Date of Conference:

30-31 May 2010