By Topic

A block-based adaptive super-exponential deflation algorithm for blind deconvolution of MIMO systems using the matrix pseudo-inversion lemma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kohno, K. ; Dept. of Electron. Control Eng., Yonago Nat. Coll. of Technol., Yonago, Japan ; Kawamoto, M. ; Inouye, Y.

The matrix inversion lemma gives an explicit formula of the inverse of a positive-definite matrix A added to a block of dyads (represented as BBH). It is well-known in the literature that this formula is very useful to develop a block-based recursive least-squares algorithm for the block-based recursive identification of linear systems or the design of adaptive filters. We already extended this result to the case when the matrix A is singular, and presented the matrix pseudo-inversion lemma. Such a singular case may occur in a situation where a given problem is overdetermined in the sense that it has more equations than unknowns. In this paper, based on these results, we propose a block-based adaptive multichannel super-exponential deflation algorithm. We present simulation results for the performance of the block-based algorithm in order to show the usefulness of the matrix pseudo-inversion lemma.

Published in:

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on

Date of Conference:

May 30 2010-June 2 2010