By Topic

Reconfigurable architecture design of motion compensation for multi-standard video coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gwo-Giun Lee ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Wei-Chiao Yang ; Min-Shan Wu ; He-Yuan Lin

This paper proposes a reconfigurable video decoder architecture of motion compensation for multi-standard video coding including MPEG-2, MPEG-4 and H.264. Through top-down design methodology, we analyze the motion compensation algorithm of the targeted applications and extract the commonality of motion compensation algorithms among the three different standards. To design a reconfigurable processing element to perform the integer-sample and fractional-sample interpolation operations to simultaneously support the main video standards, a regular data flow is arranged during the design space exploration. In addition, the bandwidth reduction strategies are also adopted to reduce the memory access times and power consumption of motion compensation operations for high bandwidth requirement, especially in H.264. The design implementation of the proposed architecture is synthesized using TMSC 0.18um technology library and can operate at 108HMz to achieve the real time motion compensation coding of 1920×1088 at 30 frames per second in the three video standards.

Published in:

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on

Date of Conference:

May 30 2010-June 2 2010