By Topic

On-chip biased voltage-controlled oscillator with temperature compensation of the oscillation amplitude for robust I/Q generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gines, A.J. ; Inst. de Microelectron. de Sevilla, Univ. of Seville, Seville, Spain ; Doldan, R. ; Barragán, M.J. ; Rueda, A.
more authors

In this work a CMOS 1.2V 5GHz low-power voltage-controlled oscillator (VCO) is proposed. It uses an on-chip biased LC-tank topology and introduces a temperature compensation technique which stabilizes the oscillation amplitude for a robust I/Q generation using a frequency divider-by-2. Compared to a standard design with constant bias, it reduces the oscillation variation by almost two orders of magnitude between 0°C and 100°C with negligible impact on the phase noise. Worst case estimations of the VCO phase noise after layout parasitic extraction are -110.1dBc/Hz and -126.6dBc/Hz at 1MHz and 5MHz offsets from the carrier, respectively. Its nominal current consumption is 198μA (plus 22.5μA for biasing) and it occupies 370×530μm2.

Published in:

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on

Date of Conference:

May 30 2010-June 2 2010