By Topic

Study on magnetic bearings system in axial-flow blood pump

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Guan ; School of Electrical Engineering, Shandong University, Jinan, China ; Shuqin Liu ; Hongwei Li ; Youpeng Fan
more authors

The system power and heat can be reduced in axial-flow Maglev blood pump whose rotor is suspended by two radial permanent magnetic bearings and one axial active magnetic bearing. But the strong force couple between the radial bearing and axial bearing makes it more difficult in rotor's axial motion control. By theory and simulation analysis, the axial characteristic of radial permanent magnetic bearing was studied, and the axial motion control model of the rotor was built. Using Hall sensors, rotor's axial displacement measurement system is designed. Experiment results indicate that this measurement has good linearity and sensitivity. Based on these studies, the incomplete differential PID controller was designed. Under this controller, the blood pump rotor has been stably suspended in five degree of freedom in any space-angle, and the stable suspension can be recovered in 0.1s when the rotor was disturbed by an impulsion. This work can promote the progress of maglev blood pump at home.

Published in:

Mechanic Automation and Control Engineering (MACE), 2010 International Conference on

Date of Conference:

26-28 June 2010