By Topic

Shielding Methodologies in the Presence of Power/Ground Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Selçuk Kose ; Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA ; Emre Salman ; Eby G. Friedman

Design guidelines for shielding in the presence of power/ground (P/G) noise are presented in this paper. The effect of P/G noise on crosstalk is analyzed for different line lengths, line widths, and interconnect driver resistances. Considering the P/G noise, a shield line can degrade rather than enhance signal integrity due to increased P/G noise coupling on the victim line. A 2π RLC interconnect model is used to investigate the effects of both coupling capacitance and mutual inductance on the crosstalk noise. Physical spacing and shield insertion are compared in terms of the coupling noise on the victim line for several technology nodes. Boundary conditions are also provided to determine the effective range of spacing and shield insertion in the presence of P/G noise. Additionally, the effects of technology scaling on P/G noise and shielding efficiency are discussed, and related design tradeoffs are addressed.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:19 ,  Issue: 8 )