By Topic

Unsupervised Land Cover Change Detection: Meaningful Sequential Time Series Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Salmon, B.P. ; Dept. of Electr., Electron. & Comput. Eng., Univ. of Pretoria, Pretoria, South Africa ; Olivier, J.C. ; Wessels, K.J. ; Kleynhans, W.
more authors

An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short term Fourier transform coefficients computed over subsequences of 8-day composite MODerate-resolution Imaging Spectroradiometer (MODIS) surface reflectance data that were extracted with a temporal sliding window. The method uses a feature extraction process that creates meaningful sequential time series that can be analyzed and processed for change detection. The method was evaluated on real and simulated land cover change examples and obtained a change detection accuracy exceeding 76% on real land cover conversion and more than 70% on simulated land cover conversion.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:4 ,  Issue: 2 )