Cart (Loading....) | Create Account
Close category search window

Distributed Containment Control for Multiple Autonomous Vehicles With Double-Integrator Dynamics: Algorithms and Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cao, Yongcan ; Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA ; Stuart, D. ; Wei Ren ; Ziyang Meng

This brief studies distributed containment control for double-integrator dynamics in the presence of both stationary and dynamic leaders. In the case of stationary leaders, we propose a distributed containment control algorithm and study conditions on the network topology and the control gains to guarantee asymptotic containment control in any dimensional space. In the case of dynamic leaders, we study two cases: leaders with an identical velocity and leaders with nonidentical velocities. For the first case, we propose two distributed containment control algorithms to solve, respectively, asymptotic containment control under a switching directed network topology and finite-time containment control under a fixed directed network topology. In particular, asymptotic containment control can be achieved for any dimensional space if the network topology is fixed and for only the 1-D space if the network topology is switching. For the second case, we propose a distributed containment control algorithm under a fixed network topology where the communication patterns among the followers are undirected and derive conditions on the network topology and the control gains to guarantee asymptotic containment control for any dimensional space. Both simulation results and experimental results on a multi-robot platform are provided to validate some theoretical results.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

July 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.