By Topic

Memory System Optimization for FPGA-Based Implementation of Quasi-Cyclic LDPC Codes Decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoheng Chen ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, Davis, CA, USA ; Jingyu Kang ; Shu Lin ; Akella, V.

Designers are increasingly relying on field-programmable gate array (FPGA)-based emulation to evaluate the performance of low-density parity-check (LDPC) codes empirically down to bit-error rates of 10-12 and below. This requires decoding architectures that can take advantage of the unique characteristics of a modern FPGA to maximize the decoding throughput. This paper presents two specific optimizations called vectorization and folding to take advantage of the configurable data-width and depth of embedded memory in an FPGA to improve the throughput of a decoder for quasi-cyclic LDPC codes. With folding it is shown that quasi-cyclic LDPC codes with a very large number of circulants can be implemented on FPGAs with a small number of embedded memory blocks. A synthesis tool called QCSyn is described, which takes the H matrix of a quasi-cyclic LDPC code and the resource characteristics of an FPGA and automatically synthesizes a vector or folded architecture that maximizes the decoding throughput for the code on the given FPGA by selecting the appropriate degree of folding and/or vectorization. This helps not only in reducing the design time to create a decoder but also in quickly retargeting the implementation to a different (perhaps new) FPGA or a different emulation board.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 1 )