Cart (Loading....) | Create Account
Close category search window
 

Matrix Converter Protection and Computational Capabilities Based on a System on Chip Design With an FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ormaetxea, E. ; Dept. of Electron. & Telecommun., Univ. of the Basque Country, Bilbao, Spain ; Andreu, J. ; Kortabarria, I. ; Bidarte, U.
more authors

The matrix converter (MC) presents a promising topology that needs to overcome certain barriers (complexity of the modulation and control techniques, protection systems, etc.) in order to gain a foothold in the industry. Traditionally, the MC has been controlled by means of a DSP, together with a field-programmable gate array (FPGA). The sole aim of the latter is to perform the safe commutation of the converter. This involves a waste of resources, as the excellent features of the FPGA are infrautilized by the control system. This paper deals with the implementation of the double-sided space vector modulation (DS SVM), commutation, reference-frame changes, and protection of the MC through a series of hardware blocks (cores) integrally implemented in an FPGA. The designed cores are technology-independent descriptions, which means that the developed design can be used in the FPGAs of any manufacturer. Moreover, the proposed design, which has been validated experimentally, has obviated the need to use a DSP. Likewise, given that all the processing capabilities have been integrated in a single chip, it can be said that an FPGA-based system on a programmable chip (SoPC) has been designed. Due to the computational capacity of the developed cores, processing time is reduced to the order of nanoseconds. This allows a response in real time and very high modulation frequencies can be attained. Moreover, these cores operate independently, and simultaneously, therefore obviating the need for sequential control and its resulting latencies and leading to an increase in the safety of the MC.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.