By Topic

Parameter-Based Data Aggregation for Statistical Information Extraction in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongbo Jiang ; Huazhong Univ. of Sci. & Technol., Wuhan, China ; Shudong Jin ; Chonggang Wang

Wireless sensor networks (WSNs) have a broad range of applications, such as battlefield surveillance, environmental monitoring, and disaster relief. These networks usually have stringent constraints on the system resources, making data-extraction and aggregation techniques critically important. However, accurate data extraction and aggregation is difficult, due to significant variations in sensor readings and frequent link and node failures. To address these challenges, we propose data-aggregation techniques based on statistical information extraction that capture the effects of aggregation over different scales. We also design, in this paper, an accurate estimation of the distribution parameters of sensory data using the expectation-maximization (EM) algorithm. We demonstrate that the proposed techniques not only greatly reduce the communication cost but also retain valuable statistical information that is otherwise lost in many existing data-aggregation approaches for sensor networks. Moreover, simulation results show that the proposed techniques are robust against link and node failures and perform consistently well in broad scenarios with various network configurations.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:59 ,  Issue: 8 )