By Topic

On the Stability of the n:m Phase Synchronization Index

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wacker, M. ; Inst. of Med. Stat., Comput. Sci. & Documentation, Jena Univ. Hosp.-Friedrich-Schiller-Univ. Jena, Jena, Germany ; Witte, H.

Synchronization analysis of multitrial EEG or (magneto encephalogram) MEG signals is an excellent approach to detect functional connectivity between different neuronal oscillators. In our current research, the n:m phase synchronization index (n:m PSI ) is of special interest. We prove the existence of stable and unstable synchronies dependent upon the analysis frequencies and show that they lie closely together in the frequency domain. Thus, a plot of the time-frequency plane of the n:m PSI automatically violates the sampling theorem and accordingly, the method cannot be considered as a black box. A frequency-tiling approach is presented that can detect robust synchronies while ignoring the unstable ones. The improved synchrony detection is evaluated in numerical experiments on using both simulated and real-life data. It can be demonstrated that the transient synchronization events between MEG oscillations in distant frequency ranges can be detected and that compactly textured EEG synchronization patterns can be reliably characterized.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 2 )