Cart (Loading....) | Create Account
Close category search window
 

Green Optical Communications—Part I: Energy Limitations in Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tucker, RodneyS. ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Parkville, VIC, Australia

The capacity and geographical coverage of the global communications network continue to expand. One consequence of this expansion is a steady growth in the overall energy consumption of the network. This is the first of two papers that explore the fundamental limits on energy consumption in optical communication systems and networks. The objective of these papers is to provide a framework for understanding how this growth in energy consumption can be managed. This paper (Part I) focuses on the energy consumption in optically amplified transport systems. The accompanying paper (Part II) focuses on energy consumption in networks. A key focus of both papers is an analysis of the lower bound on energy consumption. This lower bound gives an indication of the best possible energy efficiency that could ever be achieved. The lower bound on energy in transport systems is limited by the energy consumption in optical amplifiers, and in optical transmitters and receivers. The performance of an optical transport system is ultimately set by the Shannon bound on receiver sensitivity, and depends on factors such as the modulation format, fiber losses, system length, and the spontaneous noise in optical amplifiers. Collectively, these set a lower bound on the number of amplifiers required, and hence, the amplifier energy consumption. It is possible to minimize the total energy consumption of an optically amplified system by locating repeaters strategically. The lower bound on energy consumption in optical transmitters and receivers is limited by device and circuit factors. In commercial optical transport systems, the energy consumption is at least two orders of magnitude larger than the ideal lower bounds described here. The difference between the ideal lower bounds and the actual energy consumption in commercial systems is due to inefficiencies and energy overheads. A key strategy in reducing the energy consumption of optical transport systems will be to reduce these inefficiencies and overheads.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 2 )

Date of Publication:

March-April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.