By Topic

Adaptive Optical Splitter Employing an Opto-VLSI Processor and a 4- f Imaging System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mustafa, H.A.B. ; Centre of Excellence for MicroPhotonic Syst., Edith Cowan Univ., Joondalup, WA, Australia ; Feng Xiao ; Alameh, K.

A novel adaptive optical splitter structure employing an Opto-VLSI processor and 4-f imaging system is proposed and experimentally demonstrated. By driving the Opto-VLSI processor with computer generated multicasting phase holograms, an input optical signal launched into an input optical fiber port can be split and coupled into many output optical fiber ports with arbitrary splitting ratios. A proof-of-principle 1 × 2 adaptive optical splitter structure driven by optimized multicasting phase holograms uploaded onto the Opto-VLSI processor is developed, demonstrating an arbitrary splitting ratio over a wavelength range exceeding 50 nm.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 19 )