By Topic

Defect-Induced Breakdown in Multicrystalline Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Breitenstein, Otwin ; Max Planck Inst. of Microstructure Phys., Halle, Germany ; Bauer, Jan ; Wagner, Jan-Martin ; Zakharov, Nikolai
more authors

We have identified at least five different kinds of local breakdown according to the temperature coefficient (TC) and slope of their characteristics and electroluminescence (EL) under a reverse bias. These are 1) early prebreakdown (negative TC, low slope), 2) edge breakdown (positive TC, low slope, no EL), 3) weak defect-induced breakdown (zero or weakly negative TC, moderate slope, 1550-nm defect luminescence), 4) strong defect-induced breakdown (zero or weakly negative TC, moderate slope, no or weak defect luminescence), and 5) avalanche breakdown at dislocation-induced etch pits (negative TC, high slope). The latter mechanism usually dominates at a high reverse bias. The defects leading to the etch pits are investigated in detail. In addition to the local breakdown sites, there is evidence of an areal reverse current between the dominant breakdown sites showing a positive TC. Defect-induced breakdown shows a zero or weakly negative TC and also leads to weak avalanche multiplication. It has been found recently that it is caused by metal-containing precipitates lying in grain boundaries.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 9 )