By Topic

Fast design of 2-D linear-phase complex FIR digital filters by analytical least squares method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soo-Chang Pei ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jong-Jy Shyu

Two-dimensional full-plane and half-plane filters are more general, and much better frequency responses can be obtained than the quarter-plane filters. In this correspondence, the analytical least squares method is generalized and extended for designing 2-D full-plane and half-plane linear phase complex FIR digital filters. The 2-D filter's coefficients can be effectively determined by use of a closed-form transformation matrix and some simple element functions. The unique advantage of this technique is that it is very fast without employing iterative optimization procedures and matrix inversions. Design examples are presented to illustrate the simplicity and efficiency of the proposed method

Published in:

IEEE Transactions on Signal Processing  (Volume:44 ,  Issue: 12 )