By Topic

Attribute-aware data aggregation using dynamic routing in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiao Zhang ; Tsinghua Nat. Lab. for Inf. Sci. & Technol., Beijing, China ; Fengyuan Ren ; Tao He ; Chuang Lin

Data aggregation has been widely recognized as an efficient method to reduce energy consumption in wireless sensor networks, which can support a wide range of applications such as monitoring temperature, humidity, level, speed etc. The data sampled by the same kind of sensors have much redundancy since the sensor nodes are usually quite dense in wireless sensor networks. To make data aggregation more efficient, the packets with the same attribute, defined as the identifier of different data sampled by different sensors such as temperature sensors, humidity sensors, etc., should be gathered together. However, to the best of our knowledge, present data aggregation mechanisms did not take packet attribute into consideration. In this paper, we take the lead in introducing packet attribute into data aggregation and propose an Attribute-aware Data Aggregation mechanism using Dynamic Routing (ADADR) which can make packets with the same attribute convergent as much as possible and therefore improve the efficiency of data aggregation. This goal cannot be achieved by present static routing schemes employed in most of data aggregation mechanisms since they construct routes before transmitting the sampled data and thus can not dynamically forward packets in response to the variation of packets at intermediate nodes. Hence, we present a potential-based dynamic routing scheme which employs the concept of potential in physics and pheromone in ant colony to achieve our goal. The results of simulations in series of scenarios show that ADADR indeed conserve energy by reducing the average number of transmissions each packet needs to reach the sink and is scalable with regard to the network size.

Published in:

World of Wireless Mobile and Multimedia Networks (WoWMoM), 2010 IEEE International Symposium on a

Date of Conference:

14-17 June 2010