By Topic

Improved model of photovoltaic sources considering ambient temperature and solar irradiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
González-Morán, C. ; Dept. of Electr. Eng., Univ. of Oviedo, Gijón, Spain ; Arboleya, P. ; Reigosa, D. ; Díaz, G.
more authors

The aim of the present work is to propose a complete Photovoltaic (PV) Direct Current (DC) source model, considering non linear effects with ambient temperature and solar irradiance. The main advantage of this model is that all non ideal characteristics of the PV source are taking into account, and complex weather conditions patterns can be considered. This model includes: The PV array and boost-buck DC-DC converter that operates to assure maximum power extraction. The Maximum Power Point Tracking (MPPT) algorithm, which is based on the incremental conductance method, is also described. The model can be used for example, as a DC source to supply grid connected or islanded inverters, to study the interaction of PV generators with the power system.

Published in:

Sustainable Alternative Energy (SAE), 2009 IEEE PES/IAS Conference on

Date of Conference:

28-30 Sept. 2009