Cart (Loading....) | Create Account
Close category search window
 

Optimal decorrelating receivers for DS-CDMA systems: a signal processing framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsatsanis, M.K. ; Dept. of Electr. Eng. & Comput. Sci., Stevens Inst. of Technol., Hoboken, NJ, USA ; Giannakis, G.B.

Code division multiple access (CDMA) schemes allow a number of asynchronous users to share a transmission medium with minimum cooperation among them. However, sophisticated signal processing algorithms are needed at the receiver to combat interference from other users and multipath effects. A discrete-time multirate formulation is introduced for asynchronous CDMA systems, which can incorporate multipath effects. This formulation reveals interesting links between CDMA receivers and array processing problems. In this framework, linear receivers are derived that can completely suppress multiuser interference (decorrelating receivers). A criterion is introduced, which guarantees the decorrelating property, while providing optimal solutions in the presence of noise. Parametric FIR designs as well as nonparametric solutions are delineated, and their performance is analyzed. The proposed receivers are resistant to near-far effects and do not require the estimation of the users' and noise powers

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 12 )

Date of Publication:

Dec 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.