Cart (Loading....) | Create Account
Close category search window
 

Equivalence of generalized joint signal representations of arbitrary variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Joint signal representations (JSRs) of arbitrary variables generalize time-frequency representations (TFRs) to a much broader class of nonstationary signal characteristics. Two main distributional approaches to JSRs of arbitrary variables have been proposed by Cohen (see Time-Frequency Analysis, Englewood Cliffs, NJ, Prentice Hall, 1995 and Proc. SPIE 1566, San Diego, 1991) and Baraniuk (see Proc. IEEE Int. Conf. Acoust., Speech Signal Processing, ICASSP'94, vol.3, p.357-60, 1994). Cohen's method is a direct extension of his original formulation of TFRs, and Baraniuk's approach is based on a group theoretic formulation; both use the powerful concept of associating variables with operators. One of the main results of the paper is that despite their apparent differences, the two approaches to generalized JSRs are completely equivalent. Remarkably, the JSRs of the two methods are simply related via axis warping transformations, with the broad implication that JSRs with radically different covariance properties can be generated efficiently from JSRs of Cohen's method via simple pre- and post-processing. The development in this paper, which is illustrated with examples, also illuminates other related issues in the theory of generalized JSRs. In particular, we derive an explicit relationship between the Hermitian operators in Cohen's method and the unitary operators in Baraniuk's approach, thereby establishing the relationship between the two types of operator correspondences

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 12 )

Date of Publication:

Dec 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.