By Topic

Initial laser induced fluorescence measurements in the madhex expansion chamber and electron temperature scaling with pulsed RF power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matt Wiebold ; University of Wisconsin-Madison, Madison, WI53706, USA ; John Scharer

A flowing argon helicon plasma is formed in a 10 cm diameter, 1.5 m long Pyrex chamber with an axial magnetic field in nozzle or flat configuration, variable up to 1 kG in the source region. A new expansion chamber has been constructed and initial laser induced fluorescence (LIF) results including ion velocities and temperatures are presented. Microwave interferometry (105 GHz), collisional radiative spectroscopic codes and diamagnetic loops are used to measure electron density and temperature during pulsed (5 ms) RF operation. Calculated variation of the RF frequency (from 12 MHz to 15 MHz) during the pulse allows for low (<;3%) reflected powers during the gas breakdown and the approach to and formation of the steady state plasma. The scaling of electron temperature with RF power is also examined for high (>3 kW) RF powers. The effect of different flow rates, magnetic field expansion variation and pressures are measured to observe the variation of the ion distribution function via LIF and the axial variation of acceleration due to neutral depletion. Possible double layer creation and sustainment in the downstream (relative to the RF antenna) transition to the expansion chamber is also examined at low flow rates and high RF powers.

Published in:

Plasma Science, 2010 Abstracts IEEE International Conference on

Date of Conference:

20-24 June 2010