By Topic

Rate of plasma thermalization of pulsed nanosecond surface dielectric barrier discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Aleksahdrov, N. ; Moscow Inst. of Phys. & Technol., Moscow, Russia ; Nudnova, M. ; Kindusheva, S. ; Starikovskiy, A.

The paper presents a detailed explanation of the physical mechanism of the nanosecond pulsed surface dielectric barrier discharge (SDBD) effect on the flow. Actuator-induced gas velocities show near-zero values for nanosecond pulses. The measurements performed show overheating in the discharge region at fast (τ ~ 1 us) thermalization of the plasma inputed energy. The mean values of such heating of the plasma layer can reach 70, 200, and even 400 K for 7-, 12-, and 50-ns pulse durations, respectively. The emerging shock wave together with the secondary vortex flows disturbs the main flow. The resulting pulsed-periodic disturbance causes an efficient transversal momentum transfer into the boundary layer and further flow attachment to the airfoil surface. Thus, for periodic pulsed nanosecond dielectric barrier discharge DBD, the main mechanism of impact is the energy transfer to and heating of the near-surface gas layer. The following pulse-periodic vortex movement stimulates redistribution of the main flow momentum. Analysis of the experimental results of fast nonequilibrium plasma thermalization has been performed. It was shown that significant part of energy deposited into the non-equilibrium plasma at high electric field converts to translational degrees of freedom during plasma recombination.

Published in:

Plasma Science, 2010 Abstracts IEEE International Conference on

Date of Conference:

20-24 June 2010