By Topic

Evolutionary optimization of a fed-batch penicillin fermentation process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongwei Zhang ; Dept. of Eng. & Math., Sheffield Hallam Univ., Sheffield, UK ; Ze Zhang ; Le Hung Lan

This paper presents a genetic algorithms approach for the optimization of a fed-batch penicillin fermentation process. A customized float-encoding genetic algorithm is developed and implemented to a benchmark fed-batch penicillin fermentation process. Off-line optimization of the initial conditions and set points are carried out in two stages for a single variable and multiple variables. Further investigations with online optimization have been carried out to demonstrate that the yield can be significantly improved with an optimal feed rate profile. The results have shown that the proposed approaches can be successfully applied to optimization problems of fed-batch fermentation to improve the operation of such processes.

Published in:

Computer Communication Control and Automation (3CA), 2010 International Symposium on  (Volume:1 )

Date of Conference:

5-7 May 2010