Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Research on MAS behavior and paradigm learning-based evolutionary method and its application in E-commerce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weijin, Jiang ; Sch. of Comput. & Electron. Eng., Hunan Univ. of Commerce, Changsha, China ; Yao Lina

Distribution system optimal planning has vital significance, but there isn't efficient and practical algorithm at Traditional genetic algorithm has a poor expressive power for complicated problem because of the restriction of its norm mode, which limits the application fields of genetic algorithm. This paper adapts the idea of “Ethogenetics” reference, and presents a new type of genetic algorithm based on Agent behavior and paradigm learning. Unlike the based creating mode of feasible solution in traditional genetic algorithm, a feasible solution is created by ~ series o! ye behaviors of Agent based on knowledge in the new genetic algorithm. To adapt the new creating mode of feasible the traditional mechanism of evolution optimization based on Darwinism is abandoned and the mechanism of learning' is adopted to realize the evolution optimization. At last, an example distribution network is optimized by Ilene tic algorithm and traditional genetic algorithm respectively. The comparative result proves the new genetic I has higher expressive power, computing efficiency, convergent stability and extendable capability.

Published in:

Computer Communication Control and Automation (3CA), 2010 International Symposium on  (Volume:1 )

Date of Conference:

5-7 May 2010