By Topic

An application of Petri net reduction for Ada tasking deadlock analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shatz, S.M. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Shengru Tu ; Murata, T. ; Duri, S.

As part of our continuing research on using Petri nets to support automated analysis of Ada tasking behavior, we have investigated the application of Petri net reduction for deadlock analysis. Although reachability analysis is an important method to detect deadlocks, it is in general inefficient or even intractable. Net reduction can aid the analysis by reducing the size of the net while preserving relevant properties. We introduce a number of reduction rules and show how they can be applied to Ada nets, which are automatically generated Petri net models of Ada tasking. We define a reduction process and a method by which a useful description of a detected deadlock state can be obtained from the reduced net's information. A reduction tool and experimental results from applying the reduction process are discussed

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 12 )