By Topic

Mesh-connected trees: a bridge between grids and meshes of trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Efe, K. ; Center for Adv. Comput. Studies, Southwestern Louisiana Univ., Lafayette, LA, USA ; Fernandez, A.

The grid and the mesh of trees (or MOT) are among the best-known parallel architectures in the literature. Both of them enjoy efficient VLSI layouts, simplicity of topology, and a large number of parallel algorithms that can efficiently execute on them. One drawback of these architectures is that algorithms that perform best on one of them do not perform very well on the other. Thus there is a gap between the algorithmic capabilities of these two architectures. We propose a new class of parallel architectures, called the mesh-connected trees (or MCT) that can execute grid algorithms as efficiently as the grid, and MOT algorithms as efficiently as the MOT, up to a constant amount of slowdown. In particular, the MCT topology contains the MOT as a subgraph and emulates the grid via embedding with dilation 3 and congestion two. This significant amount of computational versatility offered by the MCT comes at no additional VLSI area cost over these earlier networks. Many topological, routing, and embedding properties analyzed here suggest that the MCT architecture is also a serious competitor for the hypercube. In fact, while the MCT is much simpler and cheaper than the hypercube, for all the algorithms we developed, the running time complexity on the MCT matches those of well known hypercube algorithms. We also present an interesting variant of the MCT architecture that admits both the MOT and the torus as its subgraphs. While most of the discussion in this paper is focused on the MCT architecture itself, these analyses can be easily extended to the variant of the MCT presented here

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 12 )