Cart (Loading....) | Create Account
Close category search window
 

A low thermal conductivity compound for thermoelectric applications: /spl beta/-Zn4Sb3

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Caillat, T. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Fleurial, J.-P. ; Borshchevsky, A.

The potential of the semiconducting compound /spl beta/-Zn/sub 4/Sb/sub 3/ for thermoelectric energy conversion was investigated. The thermoelectric properties were measured on hot-pressed samples characterized by X-ray and microprobe analysis. All samples had p-type conductivity and the thermoelectric properties of the samples were measured between room temperature and 400/spl deg/C. Exceptionally low thermal conductivity values were measured and the room temperature lattice thermal conductivity was estimated at 7 mW cm/sup -1/ K/sup -1/. High figures of merit were obtained between 200 and 400/spl deg/C and a maximum dimensionless thermoelectric figure of merit ZT of about 1.3 was obtained at a temperature of 400/spl deg/C. The stability of the compound was investigated by thermogravimetric studies and showed that the samples were stable under Ar atmosphere up to about 400/spl deg/C and up to 250/spl deg/C in dynamic vacuum. The high thermoelectric performance of /spl beta/-Zn/sub 4/Sb/sub 3/ in the 200 to 400/spl deg/C temperature range fills the gap established in the ZT spectrum of p-type state-of-the-art thermoelectric materials between Bi/sub 2/Te/sub 3/-based alloys and PbTe-based alloys. This material, relatively inexpensive, could be used in more efficient thermoelectric generators for waste heat recovery and automobile industry applications, for example.

Published in:

Thermoelectrics, 1996., Fifteenth International Conference on

Date of Conference:

26-29 March 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.