By Topic

Data forwarding in scalable shared-memory multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. A. Koufaty ; Center for Supercomput. Res. & Dev., Illinois Univ., Urbana, IL, USA ; Xiangfeng Chen ; D. K. Poulsen ; J. Torrellas

Scalable shared-memory multiprocessors are often slowed down by long-latency memory accesses. One way to cope with this problem is to use data forwarding to overlap memory accesses with computation. With data forwarding, when a processor produces a datum, in addition to updating its cache, it sends a copy of the datum to the caches of the processors that the compiler identified as consumers of it. As a result, when the consumer processors access the datum, they find it in their caches. This paper addresses two main issues. First, it presents a framework for a compiler algorithm for forwarding. Second, using address traces, it evaluates the performance impact of different levels of support for forwarding. Our simulations of a 32-processor machine show that an optimistic support for forwarding speeds up five applications by an average of 50% for large caches and 30% for small caches. For large caches, most sharing read misses are eliminated, while for small caches, forwarding does not increase the number of conflict misses significantly. Overall, support for forwarding in shared-memory multiprocessors promises to deliver good application speedups

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:7 ,  Issue: 12 )