By Topic

Agent capability in persistent mission planning using approximate dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents an extension of our previous work on the persistent surveillance problem. An extended problem formulation incorporates real-time changes in agent capabilities as estimated by an onboard health monitoring system in addition to the existing communication constraints, stochastic sensor failure and fuel flow models, and the basic constraints of providing surveillance coverage using a team of autonomous agents. An approximate policy for the persistent surveillance problem is computed using a parallel, distributed implementation of the approximate dynamic programming algorithm known as Bellman Residual Elimination. This paper also presents flight test results which demonstrate that this approximate policy correctly coordinates the team to simultaneously provide reliable surveillance coverage and a communications link for the duration of the mission and appropriately retasks agents to maintain these services in the event of agent capability degradation.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010