By Topic

Accelerated needle steering using partitioned value iteration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Asadian, A. ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, London, ON, Canada ; Kermani, M.R. ; Patel, R.V.

This paper presents a fast 2D motion planner for steering flexible needles inside relatively rigid tissue. This approach exploits a nonholonomic system approach, which models tissue-needle interaction, and formulates the problem as a Markov Decision Process that is solvable using infinite horizon Dynamic Programming. Starting from any initial condition defined in the workspace, this method calculates a set of control actions that enables the needle to reach the target and avoid collisions with obstacles. Unlike conventional solvers, e.g. the value iterator, which suffers from the curse of dimensionality, partitioned-based solvers show promising numerical performance. Given a segmented image of a workspace including the locations of the obstacles, the target and the entry point, the partitioned-based solver provides a descent solution where high resolution is required. It is shown in this paper how prioritized partitioning increases computational performance of the current DP-based solutions for the purpose of off-line path planning. By default, our planner selects the path with the least number of turning points while maintaining minimum insertion length, which leads to the least damage to tissue. In this paper, more emphasis is given to the control aspects of the problem rather than the corresponding biomedical issues.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010