By Topic

Reconstruction-based contribution for process monitoring with kernel principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alcala, C.F. ; Mork Family Dept. of Chem. Eng. & Mater. Sci., Univ. of Southern California, Los Angeles, CA, USA ; Qin, S.J.

This paper presents a new method for fault diagnosis based on kernel principal component analysis (KPCA). The proposed method uses reconstruction-based contributions (RBC) to diagnose simple and complex faults in nonlinear principal component models based on KPCA. Similar to linear PCA, a combined index, based on the weighted combination of the Hotelling's T2 and SPE indices, is proposed. Control limits for these fault detection indices are proposed using second order moment approximation. The proposed fault detection and diagnosis scheme is tested with a simulated CSTR process where simple and complex faults are introduced. The simulation results show that the proposed fault detection and diagnosis methods are effective for KPCA.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010