Cart (Loading....) | Create Account
Close category search window

Computational geometric optimal control of connected rigid bodies in a perfect fluid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taeyoung Lee ; Mech. & Aerosp. Eng., Florida Inst. of Technol., Melbourne, FL, USA ; Leok, M. ; McClamroch, N.H.

This paper formulates an optimal control problem for a system of rigid bodies that are neutrally buoyant, connected by ball joints, and immersed in an irrotational and incompressible fluid. The rigid bodies can translate and rotate in three-dimensional space, and each joint has three rotational degrees of freedom. We assume that internal control moments are applied at each joint. We present a computational procedure for numerically solving this optimal control problem, based on a geometric numerical integrator referred to as a Lie group variational integrator. This computational approach preserves the Hamiltonian structure of the controlled system and the Lie group configuration manifold of the connected rigid bodies, thereby finding complex optimal maneuvers of connected rigid bodies accurately and efficiently. This is illustrated by numerical computations.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.