By Topic

Towards optimal actuator placement for dissipative PDE systems in the presence of uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Antonios Armaou ; Dept. of Chemical Engineering, The Pennsylvania State University, University Park, 16802, USA ; Michael A. Demetriou

We consider the issue of actuator placement for transport-reaction processes when there is significant time-varying disturbance present. Such processes are commonly mathematically modeled by perturbed linear dissipative partial differential equations (PDEs). The proposed method is based on previous work by the authors on actuator placement for PDEs, however the presence of noise and/or model uncertainty precludes their direct application. By Using modal decomposition for space discretization and employing the concept of spatial and modal norms, an optimization problem is formulated that considers the controllability of specific modes, minimizes the spillover effects to the fast modes and takes explicitly into consideration the spatial distribution of noise or model uncertainty. The proposed method is successfully applied to a representative one-dimensional parabolic PDE, where the optimal location of multiple actuators is computed.

Published in:

Proceedings of the 2010 American Control Conference

Date of Conference:

June 30 2010-July 2 2010