By Topic

Modeling and uncertainty quantification of motion of lung tumors for image guided radiation therapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, R. ; MAE Dept., Univ. at Buffalo, Buffalo, NY, USA ; Singh, T. ; Singla, P.

Target localization is a key issue in the image guided radiation therapy procedures for treating tumors in thorax and abdomen. Breathing induced tumor motion necessitates larger margins during radiation therapy planning which may be harmful for healthy tissue surrounding the tumor. Large sampling time in data acquisition and latencies involved in real time imaging systems and tracking system pose a significant challenge to target localization. A framework based on pulmonary mechanics is developed to predict and precisely track the breathing induced motion of lung tumor to direct the tracking system to an estimated position instead of an observed one. A hybrid approach based on the correlation of real-time imagery data of internal markers and easy to measure external respiratory signals like flow readings etc, is proposed to support dynamic radiation therapy procedures. Issues related to reliability of proposed model predictions in the presence of parametric uncertainty are explored using Polynomial Chaos Expansion.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010