Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Minimum rotation partitioning for data analysis and its application to fault detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yasar, M. ; Techno-Sci., Inc., Beltsville, MD, USA ; Ray, A. ; Kwatny, H.G.

Symbolic dynamics provide a new set of tools for data analysis, fault detection and investigation of the dynamical systems. The main concept is partitioning the phase space into a finite number of non-overlapping segments that provide a low-dimensional representation of time series. By simplifying the dynamics this way, a novel method for nonlinear analysis of systems, including fault progression, can be constructed from observed data. This paper presents a novel space partitioning technique, referred as minimum rotation partitioning for the purpose of fault detection and quantification. The results obtained from a permanent magnet synchronous machine is presented as an example of fault detection and quantification.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010