By Topic

Robust MMSE Precoding in MIMO Channels With Pre-Fixed Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiaheng Wang ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Palomar, D.P.

In this paper, we design robust precoders, under the minimum mean square error (MMSE) criterion, for different types of channel state information (CSI) in multiple-input multiple-output (MIMO) channels. We consider low-complexity pre-fixed receivers that may adapt to the channel but are oblivious to the existence of a precoder at the transmitter. In particular, three types of CSI are taken into account: i) perfect CSI, ii) statistical CSI in the form of mean feedback, and iii) deterministic imperfect CSI assuming that the actual channel is within the neighborhood of a nominal channel, which leads to the worst-case robust design that is the focus of this paper. Interestingly, it is found that, under some mild conditions, the optimal transmit directions, i.e., the left singular vectors of the precoder, are equal to the right singular vectors of the channel, the channel mean, and the nominal channel for perfect CSI, statistical CSI, and the worst-case design, respectively. Consequently, the matrix-valued problems can be simplified to scalar power allocation problems that either admit closed-form solutions or can be efficiently solved by the proposed algorithm.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 11 )