By Topic

A Computer Assisted Method for Nuclear Cataract Grading From Slit-Lamp Images Using Ranking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wei Huang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Kap Luk Chan ; Huiqi Li ; Joo Hwee Lim
more authors

In clinical diagnosis, a grade indicating the severity of nuclear cataract is often manually assigned by a trained ophthalmologist to a patient after comparing the lens' opacity severity in his/her slit-lamp images with a set of standard photos. This grading scheme is often subjective and time-consuming. In this paper, a novel computer-aided diagnosis method via ranking is proposed to facilitate nuclear cataract grading following conventional clinical decision-making process. The grade of nuclear cataract in a slit-lamp image is predicted using its neighboring labeled images in a ranked image list, which is achieved using a learned ranking function. This ranking function is learned via direct optimization on a newly proposed approximation to a ranking evaluation measure. Our proposed method has been evaluated by a large dataset composed of 1000 different cases, which are collected from an ongoing clinical population-based study. Both experimental results and comparison with several existing methods demonstrate the benefit of grading via ranking by our proposed method.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 1 )