Cart (Loading....) | Create Account
Close category search window
 

Automatic and Unsupervised Snore Sound Extraction From Respiratory Sound Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azarbarzin, A. ; Dept. of Electr. & Comput. Engi neering, Univ. of Manitoba, Winnipeg, MB, Canada ; Moussavi, Z.

In this paper, an automatic and unsupervised snore detection algorithm is proposed. The respiratory sound signals of 30 patients with different levels of airway obstruction were recorded by two microphones: one placed over the trachea (the tracheal microphone), and the other was a freestanding microphone (the ambient microphone). All the recordings were done simultaneously with full-night polysomnography during sleep. The sound activity episodes were identified using the vertical box (V-Box) algorithm. The 500-Hz subband energy distribution and principal component analysis were used to extract discriminative features from sound episodes. An unsupervised fuzzy C-means clustering algorithm was then deployed to label the sound episodes as either snore or no-snore class, which could be breath sound, swallowing sound, or any other noise. The algorithm was evaluated using manual annotation of the sound signals. The overall accuracy of the proposed algorithm was found to be 98.6% for tracheal sounds recordings, and 93.1% for the sounds recorded by the ambient microphone.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.