By Topic

Comparison of Early Stopping Criteria for Neural-Network-Based Subpixel Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Shao ; Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA ; Gregory N. Taff ; Stephen J. Walsh

A neural-network-based subpixel classification is one of the most commonly used approaches to address spectral mixture problems. Neural-network subpixel-classification performance is directly related to the network-training protocols used. This letter examined early stopping criteria for network training of subpixel land-cover classification. A new stopping criterion is proposed that is based on the reduction of mean squared error (MSE) for a validation data set. We obtained excellent results by stopping the network training when the reduction of MSE between training iterations became marginal. Furthermore, the neural-network learning rate can be used as a threshold value to identify the stopping point. The approach appeared to be robust for both simulation data and actual remote-sensing data. Use of this criterion outperformed two other commonly used stopping criteria: a predefined number of training iterations and a cross-validation approach.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:8 ,  Issue: 1 )